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This paper addresses the problem of mitigating the vibration of nonlinear mechanical

systems using nonlinear dynamical absorbers. One particular feature of the proposed

absorber is that it is effective in a wide range of forcing amplitudes. A qualitative tuning

methodology is developed and validated using numerical simulations.
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1. Introduction

The tuned mass damper (TMD) is one popular device for passive vibration mitigation of mechanical structures. Realizing
that the TMD is only effective when it is precisely tuned to the frequency of a vibration mode [1,2], the development of
nonlinear vibration absorbers effective in a larger frequency range has been undertaken. The first studies date back to
Roberson [3], Pipes [4] and Arnold [5] who studied the influence of a nonlinearity on the suppression bandwidth. Hunt and
Nissen [6] were the first to implement a practical nonlinear damped absorber using a softening nonlinearity.

Recent developments in passive nonlinear vibration absorbers include the autoparametric vibration absorber and the
nonlinear energy sink (NES). The former absorber exploits the transfer of energy between modes, and the saturation
phenomenon [7]. This occurs in quadratically coupled systems subjected to primary excitation and possessing a 1:2
internal resonance. In [8], it is shown that the bandwidth of effectiveness can be increased substantially by using an array
of pendulums with slightly different natural frequencies. A few guidelines for the choice of optimum parameters giving
maximum bandwidth are also given. Relying on the concept of essential nonlinearity, the NES has no preferential resonant
frequency, which makes it a frequency-independent absorber [9–13]. Another salient feature of an NES is its capability to
realize targeted energy transfer (TET) during which energy initially induced in the primary system gets passively and
irreversibly transferred to the NES. This nonlinear device is well suited for vibration mitigation of multi-degree-of-freedom
(MDOF) structures, for which it can resonate virtually with and extract energy from any mode.

One potential limitation of nonlinear vibration absorbers is that their performance depends critically on the total energy
present in the system or, equivalently, on the amplitude of the external forcing. This stems from the frequency–energy
dependence of nonlinear oscillations, which is one typical feature of nonlinear dynamical systems. For instance, Ref. [12]
reports that there exists a well-defined threshold of input energy below which no significant energy dissipation in the NES
can be achieved. In this context, the main contribution of this study is to develop a nonlinear absorber that can mitigate the
vibrations of a specific mode of a nonlinear primary structure in a wide range of forcing amplitudes. Based on an extension
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of the tuning of a TMD coupled to a linear primary system, a qualitative tuning methodology for such a nonlinear absorber
is proposed in this paper.

The paper is organized as follows. Section 2 briefly recalls the TMD tuning methodology. In Section 3, a methodology for
tuning a nonlinear absorber coupled to an essentially nonlinear oscillator is developed. In Section 4, this methodology is
then extended to a primary system possessing both linear and nonlinear elastic terms. The conclusions of the present study
are summarized in Section 5.

2. Tuned mass damper coupled to a linear oscillator

Frahm [1] was the first to introduce the TMD concept and considered a linear attachment composed of a mass and a
spring coupled to a conservative linear oscillator (LO) (see Fig. 1 with c1 ¼ c2 ¼ 0). This absorber was found to be efficient
in a narrow frequency range centered at the natural frequency of the LO. Den Hartog [2] then reported that a TMD with
energy dissipation mechanisms (i.e., c2a0) increases the effective bandwidth at the cost of a reduced attenuation of the
resonance peak. These studies highlighted the trade-off existing between performance (attenuation efficiency related to
H1 optimization) and robustness (bandwidth related to H2 optimization). Interestingly enough, the tuning methodology of
a TMD coupled to a dissipative linear oscillator (i.e., c1a0) [14–17] or to an MDOF linear system [18] is still an active
research area.

The equations related to the undamped version of the system depicted in Fig. 1 and submitted to a forced excitation, are
given by

m1 €x1 þ k1x1 þ k2ðx1 � x2Þ ¼ F cosot,

m2 €x2 þ k2ðx2 � x1Þ ¼ 0. (1)

Assuming that xiðtÞ ¼ Xi cosðotÞ, the LO displacement is expressed by

X1 ¼
ðk2 �o2m2ÞF

ðk1 þ k2 �o2m1Þðk2 �o2m2Þ � k2
2

. (2)

If the LO is excited at its resonance frequency o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
, and knowing that the tuning condition imposes a zero

displacement of the LO ðX1 ¼ 0Þ it follows that

oa ¼

ffiffiffiffiffiffiffi
k2

m2

s
¼

ffiffiffiffiffiffiffi
k1

m1

s
¼ o1, (3)

where oa ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k2m2

p
is the resonant frequency of the TMD. The performance of a TMD is now examined for direct impulsive

forcing of the LO. This is realized by imparting a non-zero initial velocity to the LO ð_x1ð0Þa0; x1ð0Þ ¼ x2ð0Þ ¼ _x2ð0Þ ¼ 0Þ. The
tuning condition is verified, and weak damping is introduced to induce energy dissipation. The resulting parameter values
are listed in Table 1. A numerical integration of the equations of motion is performed for varying linear stiffnesses k1 and
Fig. 1. Tuned mass damper coupled to a linear oscillator.

Table 1
System parameters used during the numerical simulation.

Parameter Units Value

m1 kg 1

m2 kg 0.05

c1 N s/m 0.002

c2 N s/m 0.002

k1 N/m 0.5

k2 N/m 0.025
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Fig. 2. Energy dissipated in the TMD against the linear stiffness of the primary system ðk1Þ and the impulse magnitude ð_x1ð0ÞÞ: (a) three-dimensional

graph and (b) contour plot.
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initial velocities _x1ð0Þ. The performance of the absorber is assessed using the ratio between the energy dissipated in the
TMD and the input energy

Ediss;absorber;%ðtÞ ¼ 100
c2
R t

0ð
_x1ðtÞ � _x2ðtÞÞ2 dt
1
2 m1 _x1ð0Þ

2
. (4)

Fig. 2 depicts this quantity against the impulse magnitude _x1ð0Þ and the linear stiffness k1. For k1 ¼ 0:5 N=m and regardless
of the value of _x1ð0Þ, the TMD can dissipate a major portion of the input energy (i.e., 95 percent). However, a slight
mistuning in the host structure induced by a variation of k1 drastically reduces the TMD performance, which demonstrates
its narrow effective bandwidth. The motion in the high energy dissipation region is shown in Fig. 3 for _x1ð0Þ ¼ 2 m=s.
Clearly, the LO has a much lower response amplitude compared to the TMD, and an initial beating phenomenon visible in
Fig. 3(b) is followed by a 1:1 in-phase motion of the two masses. Looking at Fig. 3(d) reveals the importance of the beating
regime in the TMD performance. Strong energy exchanges occur between both oscillators and allows most of the energy
initially imparted to the LO to be dissipated into the absorber.
3. Tuning of a nonlinear vibration absorber coupled to an essentially nonlinear oscillator

Although it is often overlooked by designers, nonlinearity is a frequent occurrence in engineering structures. This is why
nonlinear primary structures are considered herein. Because of the frequency–energy dependence of nonlinear oscillations
and of the inability of the TMD to resonate at different frequencies, our objective is to exploit nonlinearity for the design of
a nonlinear vibration absorber tuned to a specific mode of a nonlinear primary system.
3.1. Basic philosophy

To progress toward this goal, appropriate tools for analyzing nonlinear oscillations, such as a frequency–energy plot
(FEP) [12], have to be utilized. Periodic motions of a nonlinear system are represented by a point in the FEP, which is drawn
at a frequency corresponding to the minimal period of the periodic motion and at an energy equal to the conserved total
energy during the motion. A branch, represented by a solid line, is a family of periodic motions possessing the same
qualitative features.

For linear systems, an FEP is not useful, because their oscillations do not exhibit any frequency–energy dependence.
However, in the present study, it is interesting to see how the tuning condition (3) of a TMD coupled to an LO can be
translated to the FEP concept. Fig. 4(a,b) depict the FEP of the LO and of the TMD, respectively, and show that the two FEPs
are identical. In other words, the frequency of both oscillators remain the same regardless of the total energy in the system.

With the aim of mitigating the vibrations of a nonlinear system, this study is an attempt to determine a suitable
configuration for a nonlinear vibration absorber. The proposed approach is to follow the tuning procedure of the TMD:
The nonlinear absorber should possess a frequency–energy plot identical to that of the nonlinear primary system of
interest.
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Fig. 3. Dynamics of the TMD coupled to a LO: (a) displacement responses; (b) close-up for early-time responses; (c) percentage of instantaneous total

energy in both oscillators and (d) percentage of total energy dissipated in the absorber.

Fig. 4. Frequency–energy plots relating to (3): (a) LO and (b) TMD.
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For SDOF primary systems, this can only be fulfilled if the restoring forces of the absorber and of the primary system have
the same functional form. For MDOF primary systems, the absorber can only be tuned to a specific (nonlinear) mode of the
host structure, because different modes will possess backbones with different frequency–energy dependence [19].
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3.2. Computation of the parameters of the nonlinear absorber

For illustration, an essentially nonlinear oscillator composed of a mass m1 and a cubic stiffness knl1
is first considered

[Fig. 5(a)]. Its backbone branch is represented in the FEP of Fig. 5(b), which highlights the intrinsic frequency–energy
dependence. The absence of linear stiffness in the system explains why the resonance frequency tends to zero for
decreasing energy levels.

Analytical computation: According to the proposed tuning methodology, the absorber should only possess a cubic
nonlinearity. The equation of motion of the resulting absorber is

m2 €x2 þ knl2
x3

2 ¼ 0. (5)

To compute adequate values for the mass m2 and cubic stiffness knl2
, the harmonic balance method [20] is applied. Starting

from

mi €xi þ knli
x3

i ¼ 0 (6)

the ansatz xiðtÞ ¼ Ai cosot is considered. Averaging over the fundamental frequency and discarding the trivial solution
recasts Eq. (6) into

3
4knli

A2
i �o

2mi ¼ 0. (7)

The resulting solutions highlight the frequency–amplitude dependence

Ai2;3
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4o2mi

3knli

s
. (8)

At t ¼ 0, xið0Þ ¼ Ai, and the total energy in the system is the potential energy stored in the cubic spring

EiðoÞjt¼0 ¼
1

4
knli

A4
i ¼

4m2
i

9knli

o4. (9)

The tuning condition imposes E1ðoÞ ¼ E2ðoÞ and yields

m2
2

knl2

¼
m2

1

knl1

) knl2
¼

m2
2knl1

m2
1

. (10)

Numerical computation: The problem can also be solved directly using numerical algorithms:

x2ðt ¼ Ti; x2ðt ¼ 0Þ;m2; knl2
Þ � x2ðt ¼ 0Þ ¼ 0;

1
4knl2

x4
2ðTiÞ � EPrimðoiÞ ¼ 0; i ¼ 1; . . . ;n:

8<
: (11)

The first condition is a periodicity condition; i.e., periodic motions of the absorber are sought. The second condition
expresses that the FEPs of the absorber and of the primary system must be identical. This problem can be solved using the
combination of shooting and optimization algorithms, which, in turn, determine the absorber parameters ðm2; knl2

Þ. This
Fig. 5. (a) Essentially nonlinear oscillator and (b) FEP for m1 ¼ 1 kg and knl1
¼ 1 N=m3.
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procedure gives accurate results, but the optimization algorithm is fairly sensitive to the initial guess (non-convex
problem).

3.3. Results

The impulsive response of the coupled system depicted in Fig. 6 is now analyzed. The equations of motion are

m1 €x1 þ c1 _x1 þ c2ð_x1 � _x2Þ þ knl1
x3

1 þ knl2
ðx1 � x2Þ

3 ¼ 0,

m2 €x2 þ c2ð_x2 � _x1Þ þ knl2
ðx2 � x1Þ

3 ¼ 0. (12)

The parameters of the primary system are m1 ¼ 1 kg and knl1
¼ 1 N=m3. For obvious practical reasons, a light-weight

absorber is adopted, m2 ¼ 0:05 kg. The nonlinear stiffness of the absorber is computed according to relation (10), and
knl2
¼ 0:0025 N=m3. Weak damping c1 ¼ c2 ¼ 0:002 N s=m is also introduced to induce energy dissipation.

The performance of the nonlinear tuned absorber is examined by numerically integrating the equations of motion (12).
A three-dimensional plot showing the energy dissipated in the absorber against the nonlinear stiffness knl1

and the impulse
magnitude _x1ð0Þ is displayed in Fig. 7. Interestingly, this figure bears a strong resemblance with Fig. 2, which corresponds to
a TMD coupled to an LO. For knl1

� 0:3 N=m3 and regardless of the value of _x1ð0Þ, the tuned nonlinear absorber can dissipate
a major portion of the input energy (i.e., 95 percent). In addition, the region of high energy dissipation is not localized to a
particular value of knl1

, but it extends over the interval knl1
¼ 0:120:35 N=m3.

These results seem to validate the proposed tuning procedure, at least qualitatively: a nonlinear absorber that can
mitigate the vibrations of a nonlinear primary structure in a wide range of forcing amplitudes has been obtained. The
quantitative agreement is less convincing, because the high dissipation energy appears around knl1

¼ 0:3 N=m3 and not
around knl1

¼ 1 N=m3. If the nonlinear stiffness is fixed at knl2
¼ 0:0075 N=m3 instead of knl2

¼ 0:0025 N=m3, the high
dissipation energy appears around knl1

¼ 1 N=m3, as shown in Fig. 8. This is one limitation of the procedure, which results
from the fact that the coupled system is not addressed directly. Instead the two oscillators are considered separately during
the tuning.
Fig. 6. Essentially nonlinear absorber coupled to an essentially nonlinear oscillator.

Fig. 7. Energy dissipated in the tuned nonlinear absorber (with knl2
¼ 0:0025 N=m3) against the nonlinear stiffness knl1

of the primary system and the

impulse magnitude _x1ð0Þ: (a) three-dimensional graph and (b) contour plot.
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Fig. 8. Energy dissipated in the tuned nonlinear absorber (with knl2
¼ 0:0075 N=m3) against the nonlinear stiffness ðknl1

Þ of the primary system and the

impulse magnitude ð_x1ð0ÞÞ: (a) three-dimensional graph and (b) contour plot.

Fig. 9. Dynamics of the tuned nonlinear absorber coupled to a essentially nonlinear oscillator. (a) Displacement responses; (b) close-up for early-time

responses; (c) percentage of instantaneous total energy in both oscillators and (d) percentage of total energy dissipated in the absorber.
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R. Viguié, G. Kerschen / Journal of Sound and Vibration 326 (2009) 780–793 787
3.4. Further analysis of the coupled system

The motion in the high energy dissipation region is shown in Fig. 9 for knl2
¼ 0:0075 N=m3 and _x1ð0Þ ¼ 4 m=s. The

mechanisms giving rise to energy dissipation are similar to those observed for a TMD coupled to an LO in Fig. 3, namely a
1:1 in-phase motion follows the initial nonlinear beating phenomenon.

An interesting feature of the coupled system is that it possesses similar normal modes, i.e., energy-invariant straight
modal curves [21]. To verify this conjecture, the condition

x2ðtÞ ¼ ax1ðtÞ (13)

is imposed where a is a scalar. Plugging (13) in the conservative form of Eq. (12) and considering � ¼ m2=m1 yields

x3
1½knl1

�aþ knl2
ð1� aÞ3ð�aþ 1Þ� ¼ 0. (14)

Assuming that x1a0, Eq. (14) is solved with respect to the absorber nonlinear stiffness knl2
:

knl2
¼

�knl1
�a

ð1� aÞ3ð�aþ 1Þ
. (15)

Because knl2
is positive, the solution is given by

knl2
2�0;þ1½;

a 2 �1

�
;0

�� S
½1;þ1½:

8><
>: (16)

We arrive to the interesting conclusion that
Despite the fact that it has no linear springs, the coupled 2DOF system possesses straight modal lines (i.e., similar
NNMs), as for linear systems.
In summary, the previous developments support that the addition of an essentially nonlinear absorber to an essentially
nonlinear primary system makes the coupled system behave in a ‘somewhat linear’ fashion, and this despite its strongly
nonlinear character.
4. Tuning of a nonlinear vibration absorber coupled to a nonlinear oscillator

The tuning methodology of the previous section is extended to nonlinear primary systems comprising both linear and
nonlinear springs [Fig. 10(a)]. This system may equally well represent the motion of one specific nonlinear mode of an
MDOF primary system. The frequency–energy dependence of this system is shown in the FEP of Fig. 10(b) for the
parameters listed in Table 2. At low energy level, the dynamics is governed by the underlying linear system, and
the oscillator exhibits a constant resonant frequency at o ¼ 1 rad=s. For increasing energy levels, the nonlinear character of
the motion becomes dominant, and the resonant frequency increases.
Fig. 10. Duffing oscillator: (a) configuration and (b) FEP.
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Table 2
Parameters of the Duffing oscillator.

Parameter Units Value

m1 kg 1

knl1 N=m3 4

k1 N/m 1

Fig. 11. Nonlinear vibration absorber coupled to a nonlinear oscillator.

R. Viguié, G. Kerschen / Journal of Sound and Vibration 326 (2009) 780–793788
4.1. Computation of the parameters of the nonlinear absorber

Analytical computation: The equation of motion of the Duffing oscillator is

mi €xi þ kixi þ knli
x3

i ¼ 0. (17)

A straightforward application of the harmonic balance method gives

Ai2;3
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðo2mi � kiÞ

3knli

s
. (18)

The total energy in the system is

EiðoÞjt¼0 ¼
1

4
knli

A4
i þ

1

2
knli

A2
i ¼

4

9knli

m2
i o

4 �
1

2
kiðmio2 þ kiÞ

� �
. (19)

The tuning methodology imposes E1ðoÞ ¼ E2ðoÞ, which results in

m2
1

knl1

¼
m2

2

knl2

;
k1m1

knl1

¼
k2m2

knl2

, (20)

which can be recast into

k1

m1
¼

k2

m2
;

m2
1

knl1

¼
m2

2

knl2

. (21)

The first and second conditions are related to the tuning condition of a TMD coupled to a LO (see Section 2) and of an
essentially nonlinear absorber coupled to an essentially nonlinear oscillator (see Section 3), respectively. Therefore, the
tuning of the linear and nonlinear springs of the absorber can be performed by separating explicitly the linear and
nonlinear behaviors.

Numerical computation: The problem consists in solving the following system of equations:

x2ðt ¼ Ti; x2ðt ¼ 0Þ;m2; k2; knl2
Þ � x2ðt ¼ 0Þ ¼ 0;

1
4knl2

x4
2ðTiÞ þ

1
2k2x2

2ðTiÞ � EPrimðoiÞ ¼ 0; i ¼ 1; . . . ;n:

8<
: (22)

4.2. Results

The impulsive response of the coupled system

m1 €x1 þ c1 _x1 þ c2ð_x1 � _x2Þ þ k1x1 þ knl1
x3

1 þ knl2
ðx1 � x2Þ

3 þ k2ðx1 � x2Þ ¼ 0,

m2 €x2 þ c2ð_x2 � _x1Þ þ k2ðx2 � x1Þ þ knl2
ðx2 � x1Þ

3 ¼ 0 (23)
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R. Viguié, G. Kerschen / Journal of Sound and Vibration 326 (2009) 780–793 789
is now analyzed (Fig. 11). The system parameters are given in Table 3 where the absorber mass is small, and the other
absorber parameters have been chosen according to Eq. (21). Weak damping ðc1 ¼ c2 ¼ 0:002 N s=mÞ is also introduced in
both oscillators.

A three-dimensional plot of the energy dissipated in the absorber against the nonlinear stiffness knl1
and the impulse

magnitude _x1ð0Þ is numerically computed and illustrated in Fig. 12. For small excitation amplitudes ð_x1ð0Þo0:4 m=sÞ, the
Table 3
Parameter values of the conservative 2DOF system.

Parameter Units Value

m1 kg 1

knl1 N=m3 4

k1 N/m 1

m2 kg 0.05

knl2 N=m3 0.01

k2 N/m 0.05

Fig. 12. Energy dissipated in the tuned nonlinear absorber for knl2
¼ 0:01 N=m3 against the nonlinear stiffness knl1

of the primary system and the impulse

magnitude _x1ð0Þ: (a) three-dimensional graph and (b) contour plot.

Fig. 13. Energy dissipated in the tuned nonlinear absorber for knl2
¼ 0:025 N=m3 against the nonlinear stiffness knl1

of the primary system and the

impulse magnitude _x1ð0Þ: (a) three-dimensional graph and (b) contour plot.
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nonlinear springs have no influence on the dynamics of the system, which resembles that of an LO coupled to a TMD. The
resulting linear dynamics explains the presence of a high energy dissipation region regardless of the value of knl1

. For
increasing excitation amplitudes ð_x1ð0Þ40:4 m=sÞ, the nonlinear springs participate in the system dynamics to a large
Fig. 14. Tuned nonlinear absorber coupled to a nonlinear oscillator. (a) Solid (blue) line: FEP of the coupled system; dashed (black) line: FEP of the

nonlinear primary system; (b), (d) close-up of branches S11þ and S11�, respectively; (c), (e) motion in the configuration space for S11þ and S11�
branches, respectively. The red arrow in (b) and (d) represents the locus of unstable periodic motions. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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extent. At high energy levels, the system dynamics resembles that of an essentially nonlinear absorber coupled to an
essentially nonlinear oscillator.

As in Section 3, these results validate the proposed tuning procedure in the sense that the effectiveness of the nonlinear
absorber is not affected by the total energy present in the system. As was observed in Section 3, the quantitative agreement
is questionable, because the nominal value of the nonlinear stiffness of the primary structure, knl1

¼ 4 N=m3, is not
included in the region of high energy dissipation. To do so, knl2

has to be changed to 0:025 N=m3 (Fig. 13). In this figure, we
note that the high energy dissipation region is not localized to a specific value of knl1

, which shows that the absorber is
robust against mistuning.

4.3. Further analysis of the coupled system

The FEP of the coupled system is depicted in Fig. 14(a) for the parameters listed in Table 3. Similarly to what is observed
in the FRF of a TMD coupled to an LO, two branches of fundamental resonance S11þ and S11� (blue solid lines) appear in
Fig. 15. Duffing oscillator coupled to a TMD.

Fig. 16. Duffing oscillator coupled to an NES.

Fig. 17. TMD (m2 ¼ 0:05 kg and k2 ¼ 0:05 N=m) performances when coupled to a general nonlinear oscillator. (a) Energy dissipated in the nonlinear

absorber against the nonlinear stiffness of the primary system ðknl1
Þ and the impulse magnitude ð_x1ð0ÞÞ and (b) contour plot.
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Fig. 18. Purely nonlinear absorber (m2 ¼ 0:05 kg and knl2
¼ 0:01 N=m3) performances when coupled to a general nonlinear oscillator. (a) Energy

dissipated in the nonlinear absorber against the nonlinear stiffness of the primary system ðknl1
Þ and the impulse magnitude ð_x1ð0ÞÞ and (b) contour plot.

R. Viguié, G. Kerschen / Journal of Sound and Vibration 326 (2009) 780–793792
the vicinity of the backbone of the nonlinear primary system (black dashed line). A close-up of each branch is depicted in
Fig. 14(b)–(d). The representation of the periodic motions in the configuration space in Fig. 14(c, e) shows a slight evolution
of the periodic motions with energy. Unlike what was observed in Section 3.4, the modal shapes are no longer similar.
Regarding the energy dissipation mechanisms, a 1:1 in-phase motion follows an initial nonlinear beating, as in the previous
sections.

To further validate the proposed tuning methodology, a TMD and an essentially nonlinear absorber are coupled
separately to the nonlinear primary system (see Figs. 15 and 16). Their tuning is achieved with respect to the linear and
nonlinear springs of the primary system, respectively. The plots of energy dissipation are shown in Figs. 17 and 18. It can be
seen that the TMD is always effective at low energy levels ð_x1ð0Þo0:5 m=sÞ, but its efficiency decreases as nonlinear effects
come into play. Conversely, there exists a well-defined threshold of input energy below which no significant energy
dissipation in the essentially nonlinear absorber can be achieved.

5. Conclusions

Realizing that the performance of nonlinear vibration absorbers depends on the amplitude of the external forcing, this
study examines a nonlinear absorber that is effective in a wide range of forcing amplitudes. A qualitative tuning
methodology, which imposes the frequency–energy dependence of the absorber to be identical to that of the nonlinear
primary system, is developed. The proposed absorber proves useful for mitigating the impulsive response of an SDOF
nonlinear oscillator, which may also represent the vibrations of a specific mode of an MDOF primary structure.

Another finding of this study is that, despite its strongly nonlinear character, a 2DOF system comprising only essential
nonlinearities seems to behave in a ‘somewhat linear’ fashion. For instance, this system possesses similar modes, i.e.,
energy-invariant straight modal curves.
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